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BACKGROUND: Previous studies have reported associations of perinatal exposure to air toxics, including some metals and volatile organic compounds,
with autism spectrum disorder (ASD).
OBJECTIVES: Our goal was to further explore associations of perinatal air toxics with ASD and associated quantitative traits in high-risk multiplex
families.
METHODS:We included participants of a U.S. family-based study [the Autism Genetic Resource Exchange (AGRE)] whowere born between 1994 and 2007
and had address information. We assessed associations between average annual concentrations at birth for each of 155 air toxics from the U.S. EPA emis-
sions-based National-scale Air Toxics Assessment and a) ASD diagnosis (1,540 cases and 477 controls); b) a continuous measure of autism-related traits, the
Social Responsiveness Scale (SRS, among 1,272 cases and controls); and c) a measure of autism severity, the Calibrated Severity Score (among 1,380 cases).
In addition to the individual’s air toxic level, mixed models (clustering on family) included the family mean air toxic level, birth year, and census covariates,
with consideration of the false discovery rate.

RESULTS: ASD diagnosis was positively associated with propionaldehyde, methyl tert-butyl ether (MTBE), bromoform, 1,4-dioxane, dibenzofurans,
and glycol ethers and was inversely associated with 1,4-dichlorobenzene, 4,4 0-methylene diphenyl diisocyanate (MDI), benzidine, and ethyl carba-
mate (urethane). These associations were robust to adjustment in two-pollutant models. Autism severity was associated positively with carbon disul-
fide and chlorobenzene, and negatively with 1,4-dichlorobenzene. There were no associations with the SRS.

CONCLUSIONS: Some air toxics were associated with ASD risk and severity, including some traffic-related air pollutants and newly-reported associa-
tions, but other previously reported associations with metals and volatile organic compounds were not reproducible. https://doi.org/10.1289/EHP1867

Autism spectrum disorder (ASD) is a serious developmental disabil-
ity with a U.S. prevalence of 1 in 68 among 8-y-olds (Christensen
et al. 2016). ASD etiology is multifactorial, caused in part by genet-
ics, with inheritance estimates of 50% (Sandin et al. 2014). Other
suggested causes include environmental chemical exposures during
the period of rapid brain development in pregnancy and early post-
natal life (Kalkbrenner et al. 2014; Lyall et al. 2016). Understanding
the contribution of environmental factors to ASD is important, as
these factors may be amenable to intervention, and may operate on
specific inherited backgrounds.

Humans are exposed to hundreds of environmental chemicals
by inhaling ambient air. Air pollution is a complex mixture of of-
ten spatially correlated metals, volatile organic compounds, and
particles. The air pollutant, fine particulate matter ≤2:5 lm in aer-
odynamic diameter (PM2:5), has been shown to be associated with
ASD in several studies and a meta-analysis (Becerra et al. 2013;
Volk et al. 2013, Lam et al. 2016). Although PM2:5 and five other
criteria pollutants are monitored extensively in the United States,

hundreds of other air pollutants have historically been monitored
less frequently, that is, the metals and volatile organic com-
pounds termed air toxics (also known as hazardous air pollu-
tants). Air toxics arise from vehicle emissions (traffic pollution),
factory and power plant smokestacks, and small widely distrib-
uted sources like gas stations and dry cleaners. Sources of air
toxics overlap with those of PM2:5, with an especially important
source being traffic-related air pollution—considered a primary
source of PM2:5. However, air toxics are often studied separately
from criteria air pollutants because methods for their assessment
and quantification vary. Air toxics are important to study with
regard to ASD because they have established toxicity, have some
evidence of association with autism in a small number of prior
studies, and constitute potentially modifiable risk factors (U.S.
EPA 2017).

Prior studies of air toxics and ASD were population-based
and nested case–control studies conducted in different regions of
the United States (see Table S1) (Kalkbrenner et al. 2010;
Roberts et al. 2013; Talbott et al. 2015; von Ehrenstein et al.
2014; Windham et al. 2006). These studies included between 11
and 35 air toxics in primary analyses. Various solvents and metals
were found to be associated with ASD, although results for indi-
vidual air toxics varied by study. Air toxics positively associated
in at least one of these studies included 1,2,4-trichlorobenzene,
1,3-butadiene, acetaldehyde, benzene, cadmium, chromium, cop-
per, diesel particulate matter, ethyl benzene, formaldehyde, lead,
manganese, mercury, methylene chloride, nickel, quinoline, sty-
rene, tetrachloroethylene (perchloroethylene), toluene, trichloro-
ethylene, vinyl chloride, and xylenes (see Table S1). Whether
each of these air toxics plays a role in contributing to ASD is still
in question due to limited replication of results for individual air
toxics. Additionally, questions remain about whether an associa-
tion with a given air toxic may be driven by a different, correlated
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pollutant, and resolving this potential confounding is important for
determining an appropriate regulatory response.

To extend the understanding of the roles of air toxics in ASD
etiology, we conducted a study using a different design than pre-
viously, with unique strengths. In a multiplex family-based study
of individuals residing across the United States, it was possible to
account for some unmeasured family-level confounders and to
examine associations in the context of high genetic risk. In addi-
tion to examining risk for ASD diagnosis, we examined autism-
related neurodevelopmental impairment, including autistic traits
and autism severity. We examined a larger number of air toxics
than previously studied—considering an initial list of 182 air
toxics—to evaluate consistency with prior findings and to exam-
ine effects of additional air toxics that have been little studied.
Finally, we were able to partially address the role of air pollutant
mixtures by conducting some pairwise adjustments of one air
toxic for another.

Methods

Study Sample
Our study sample comprised individuals from the Autism Genetic
Resource Exchange (AGRE), a volunteer research repository of
families from across the United States in which typically two
or more siblings have a diagnosis of ASD (multiplex families).
AGRE was formed in 1997 to create a large data repository of
autism phenotype information and biomaterials to facilitate genetic
studies of autism (https://research.agre.org/?CFID=572128&
CFTOKEN=8010), with IRB oversight from the University of
Pennsylvania School of Medicine (Geschwind et al. 2001), and
includes over 1,700 families (Autism Genetic Resource Exchange
2016). AGRE recruitment methods and phenotype characteriza-
tion have been described in detail elsewhere (Goin-Kochel et al.
2008). Briefly, participating families self-referred into AGRE.
Once interest was indicated, enrollment materials and informed
consent were collected by AGRE staff and participation in the
assessment battery and biosample collection began. Each AGRE
family has the option to discontinue participation at any time and to
indicate a willingness to be contacted for additional research stud-
ies. For this study, we included families with at least one birth
between 1994 and 2007 to correspond to the period when high
quality data on the air pollutant exposures studied here were avail-
able, and to allow at least 5 y of follow-up until our study start in
2012 for a possible diagnosis of ASD. This resulted in 3,342 partic-
ipants from 1,466 families as our startingAGRE population.

Autism Assessment
We analyzed three outcome measures pertaining to autism diagno-
sis and phenotype: a) an ASD diagnosis; b) a continuous measure
of the broader autism phenotype among cases and controls, using
the Social Responsiveness Scale (SRS); and c) a measure of the
severity of the autism symptoms only among those meeting diag-
nostic criteria for ASD, using the Calibrated Severity Score (CSS).

ASD diagnosis for all AGRE participants was based on a
well-validated parent interview autism research tool, the Autism
Diagnostic Interview–Revised (ADI-R) (Le Couteur et al. 1989).
After scoring, participants were categorized as Autism, Not Quite
Autism (NQA), Broad Spectrum, and Not Met. For research pur-
poses, AGRE defines the NQA category as “no more than one
point away from meeting autism criteria on any or all of the three
‘content’ domains (i.e., social, communication, and/or repetitive
behavior) and meeting criteria on the ‘age of onset’ domain; or,
individuals who meet criteria on all three ‘content’ domains, but
do not meet criteria on the ‘age of onset’ domain.” The Broad

Spectrum category is defined by AGRE as “patterns of impairment
along the spectrum of pervasive developmental disorders” (AGRE
2016). For this study, we defined ASD diagnosis as a participant
classified as Autism, NQA, or Broad Spectrum, consistent with
AGRE standard practice (Lajonchere and AGRE Consortium
2010). Participants categorized by AGRE as Not Met or with miss-
ing statuswere considered not to have anASDdiagnosis.

All AGRE participants (including unaffected siblings) were
invited to complete the SRS, as part of other AGRE collabora-
tions (Constantino et al. 2003), but only about 63% did so.
Although the SRS was developed as a clinical screening tool to
distinguish autism from other childhood psychiatric conditions, it
has been used in research as a valid quantitative measure of autis-
tic traits in children 4–18 y of age. The SRS has 65 items with
Likert-scale responses normed to a mean of 50 points, with
higher scores indicating more autistic traits. For this analysis, we
included the total t-score of the SRSwhen completed by a parent of
the index participant within the recommended age range (4–18 y).

Lastly, to address the degree of autism severity among AGRE
participants designated as having ASD, we included a score con-
structed from items of a research tool for autism based on direct
observation, the Autism Diagnostic Observation Schedule (ADOS)
(Lord et al. 1989). ADOS raw scores were mapped to CSSs based
on the algorithm developed by Gotham et al. (2009). The CSS is a
standardized metric for comparing autism severity across chrono-
logical ages and IQ points. The CSS ranges from 1 to 10, with
higher scores indicating more severe autism.

Address Collection and Geocoding Process
We linked concentrations of multiple air toxic pollutants to AGRE
participants using individual-level geographic and temporal infor-
mation. We focused on the home address of the family during the
pregnancy with each index participant because of evidence that
pregnancy and early life is a period when exogenous exposures
may contribute to ASD.

We collaborated with AGRE to obtain participant addresses in
two ways. First, all AGRE families with at least one member born
between 1994 and 2007 were approached to complete an online
residential history questionnaire recording residence dates and
addresses. To supplement these data, we performed a LexisNexis
search to gather address history data when the study contact listed
for an AGRE family was the biological mother. LexisNexis is an
aggregator of consumer (e.g., credit) and public (e.g., voter regis-
tration, department of motor vehicles) records that provides address
history search services. The accuracy of LexisNexis residential
tracing has compared favorably to self-report (Jacquez et al. 2011).
After integration of the two sources to obtain the largest possible
sample size, we removed participants who did not have an address
falling in the period from 1 y before through 2 y after the date of
birth of the participant. If more than one address was returned by
LexisNexis and the address dates were sequential and consistent,
gaps between addresses were filled by splitting time between sub-
sequent addresses. For example, if the end date of an address was
listed as 1 July 2000 and the start of the next sequential address
was 1 August 2000, then 15 July 2000 (the mid-point between the
two) was considered to be the move date. We used the date of birth
to assign the air toxics exposure, prioritizing the self-reported
address history over the LexisNexis address history when both
were available. When LexisNexis address histories contained mul-
tiple addresses corresponding to the birth date, we used the address
with the highest proprietary confidence ranking algorithm. We
excluded 5 participants who at birth resided outside of the contigu-
ous United States, resulting in 2,489 participants with an air toxics
exposure assignment (74% of the 3,342 eligible based on birth
year).
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We determined the spatial coordinates for the birth address
using ArcGIS and the Texas A&M Geocoder. We then used spa-
tial joins within the Texas A&M Geocoder to determine the census
tract and census block group corresponding to the birth address for
each included AGRE participant. We assigned both 1990 and
2000 census boundaries, which have slight differences, because
both were needed for linking to air toxics and census variables.

Air Toxics Assessment
Air toxics concentrations were obtained from the emissions-
based model of the U.S. EPA, the National-scale Air Toxics
Assessment (NATA) (U.S. EPA 2016; Rosenbaum et al. 1999).
NATA models were created and run every 3 y during this study
period to create census-tract estimates for the year. We linked the
NATA model closest in time to the birth year as follows: NATA
1996 for birth years 1994–1997, NATA 1999 for birth years
1998–2000, NATA 2002 for birth years 2001–2003, and NATA
2005 for birth years 2004–2007. The NATA model uses inputs
from the National Emissions Inventory, which includes emissions
from smokestacks as reported to the Toxics Releases Inventory;
traffic volume and location; other national, regional, and local emis-
sions information; chemical transformation in the atmosphere; and
weather information, to generate the average ambient concentration
of multiple air toxics for each U.S. census tract. NATA uses the
Assessment System for Population Exposure Nationwide (ASPEN)
framework to simulate the behavior of the air toxics once emitted
into the atmosphere, for example, by assuming certain distribution
patterns and secondary pollutant formation (Rosenbaum et al.
1999). The model has been validated showing good agreement
between modeled and measured values, but with differences by
region (Payne-Sturges et al. 2003; Pratt et al. 2000; Rosenbaum
et al. 1999; State of New Jersey 2001). The number of air toxics
modeled by the U.S. EPA was much smaller in 1996 (33 air toxics)
and then was expanded for model years 1999, 2002, 2005 (although
the exact list of available air toxics differed slightly across years.)
For a few air toxics, we consulted NATA technical documentation
to combine air toxics with slight differences across years: chromium
III/VI, polycyclic organic matter (POM), and polycyclic aromatic
hydrocarbons (PAH).When a given air toxic was not available for a
certain year, we treated that observation as missing rather than fill-
ing in with an earlier or later year. Therefore, the sample size avail-
able for analysis varied across air toxics.

Covariates
Characteristics of AGRE participants, such as year of birth, race/
ethnicity, number of siblings in the family, and maternal age,
were obtained from AGRE datasets. To enrich the information on
the neighborhood environment, which may be related to air toxic
concentrations, we linked to census data using the block group
pertaining to the index participant’s birth address. Census block
group variables pertaining to population density, percentage with
a high school education or more, and median rent were spatially
smoothed and scaled to percentile values.

Statistical Methods
We included 155 air toxics with a sufficient proportion detected,
defined as at least 10% with non-zero concentrations (resulting in
25 excluded air toxics), and with sufficient variability in this data-
set, defined as air toxics for which the 95% concentration was at
least twice the 5% concentration (resulting in two additional
excluded air toxics) (see Table S2). Results were scaled to the
difference between the 75th and 25th percentile for each pollutant
except for six air toxics with a 75th percentile value of 0, for
which we contrasted the 95th percentile value to 0. We truncated

air toxics concentrations with highly skewed distributions by
replacing those values that were outside Q1− ð3× IQRÞ and
Q3+ ð3× IQRÞ at Q1− ð3× IQRÞ and Q3+ ð3× IQRÞ. We com-
pared the model fits of truncated air toxics with those of log-
transformed air toxics in models predicting ASD diagnosis, con-
cluding that log-transformed air toxics produced a better fit on
average, based on a lower Akaike information criterion value
(Akaike 1974). In log transformation, zeros were replaced by the
half of the minimum positive non-zero value in our sample.

To present and compare results taking into consideration
common sources or spatial patterns of air toxics, we placed air
toxics into correlation groups with at least moderate pair-wise
correlations (r>0:7). These groups were used to order results in
tables, not to create indices or factor scores as predictors in statis-
tical models. To create the groups, we used hierarchical cluster-
ing, with an agglomerative method using complete distance
(Defays 1977), where distance was defined as

ffiffiffiffiffiffiffiffiffiffiffiffi

1− r2
p

and r was
the correlation of the log-transformed air toxics, specifying
groups with a minimum correlation greater than the absolute
value of 0.7. The method was robust to the impact of missing
observations across a large number of air toxics; the missing pat-
tern precluded using principal components analysis.

Our primary models produced effect estimates for each air
toxic singly as a predictor of three separate autism-related end-
points: a) odds ratios (ORs) and 95% confidence intervals (CIs)
from logistic regression comparing participants with an ASD di-
agnosis to siblings who were not diagnosed with ASD (1,540
cases and 477 controls), b) change in SRS total t-score using lin-
ear regression (n=1,272 cases and controls combined), and c)
change in CSS using linear regression among participants with an
ASD diagnosis (n=1,380). To account for similarities among
siblings, all models were mixed models with a random effect for
the family. To adjust for unmeasured family-level factors that are
predictive of air toxic exposures and may confound associations,
we modeled an individual participant’s air toxic concentration
adjusted for the average of the same air toxic concentration calcu-
lated for that participant’s family group, following the method of
Begg and Parides (2003). This modeling approach leverages the
information available in a dataset of siblings nested within fami-
lies. It assumes that focusing on how a given participant’s air
toxic exposure differs from his/her siblings is more likely to be
an unbiased measure of exposure and accounts for the average air
toxic level in the family, which may be influenced by social class
confounding, inherited genomic susceptibility, or other family-
level factors. All models were adjusted for the participant’s birth
year to account for temporal trends (including maternal age
across sibling births, trends in ASD diagnosis rates over time,
and differences across NATA model years) and adjusted for cen-
sus block group variables. To account for the large number of sta-
tistical comparisons, we used the Benjamini-Hochberg approach
with the false discovery rate (FDR) set at the 0.1 level, to limit
the proportion of our significant findings that will be false posi-
tive to 10% (Benjamini and Hochberg 1995).

We performed a sensitivity analysis to evaluate the impact of
air toxics exposuremeasurement error due to time lags between the
year of the NATA estimate and the year of the child’s birth, by
restricting to birth years when the pregnancy likely overlapped the
years of the NATA estimates (e.g., 1996, 1997, 1999, 2000, 2002,
2003, 2005, 2006). We hypothesized that these ORs would be
greater in magnitude due to reduced exposure measurement error.
This sample was approximately 60% of the original sample: 940
with autism and 283without, from 772 families.

We evaluated the extent to which our main findings may have
been influenced by confounding by a different air toxic in a sensi-
tivity analysis of select two-pollutant models. To limit the
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number of multiple comparisons, we evaluated 34 pollutant pairs
we judged more likely to have a confounding pattern because they
met two criteria: a) both air toxics exhibited associations with an
ASD diagnosis, defined as those whose 95% CI excluded the null,
and b) the two log-transformed air toxics were correlated in our
modeling context, that is, with partial correlation at the absolute
value of 0.4 or higher, after accounting for covariates (the family
mean air toxics concentration, birth year, and census block group
variables). We then used the same model structure (mixed logistic
regression model of ASD diagnosis with confounders listed above)
but including two individual participant air toxics concentrations
and two family mean air toxics concentrations. To assure a valid
comparison given different degrees of missing air toxics data, we
refit the single-pollutant models to include only the sample avail-
able in the two-pollutant model, as needed.

Because previous reports have found the effect of some air toxics
onASD risk differed by child sex (Roberts et al. 2013),we evaluated
modification by sex. Modification was evaluated for all air toxics in
adjusted models for ASD diagnosis, using a Wald test of the cross-
product term between the logarithm of the individual air toxic con-
centration and participant sex, using an alpha level of 0.10.

Results
In the full analytical sample (n=2,017 with or without an ASD di-
agnosis), 68% of participants were white, non-Hispanic race/eth-
nicity and 19% were Hispanic (Table 1). Birth years were spread
throughout the study period, and a preponderance of families had
two or three siblings, in line with the AGRE recruitment design.
SRS total t-scores exhibited a bimodal distribution consistent with

Table 1. Characteristics of included AGRE participants by ASD diagnosis, score on the Social Responsiveness Scale, and Calibrated Severity Score. [Values
are n (%) or mean±SD].

Characteristic
ASD diagnosis
(n=1,540)

No ASD diagnosis
(n=477)

SRS total t-score
(n=1,272)

CSS
(n=1,380)

Sex
Male 1,210 (79) 240 (50) 895 (70) 77:0± 19:9 1,093 (79) 7:5± 1:9
Female 330 (21) 237 (50) 377 (30) 70:3± 25:7 287 (21) 6:9± 2:1
Race/ethnicity
Non-Hispanic white 1,039 (67) 324 (68) 871 (70) 75:5± 21:8 939 (68) 7:4± 1:9
Non-Hispanic black 26 (2) 6 (1) 30 (2) 71:4± 17:0 24 (2) 7:3± 1:8
Hispanic 290 (19) 91 (19) 247 (19) 74:5± 23:5 265 (19) 7:3± 2:0
Other 125 (8) 30 (6) 99 (8) 73:6± 21:9 114 (8) 7:1± 1:9
Unknown 60 (4) 26 (5) 25 (2) 73:2± 21:5 38 (3) 7:1± 2:0
Number of siblings in family (n)
1 15 (1) 0 (0) 9 (1) 81:1± 12:7 13 (1) 7:8± 1:4
2 556 (36) 31 (7) 401 (32) 79:4± 19:5 482 (35) 7:4± 1:9
3 583 (38) 197 (41) 490 (39) 74:9± 22:6 533 (39) 7:3± 2:0
4 210 (14) 136 (29) 225 (18) 68:9± 22:8 191 (14) 7:5± 2:0
5–11 176 (11) 113 (24) 147 (12) 72:4± 23:2 161 (12) 7:1± 2:0
Birth year
1994–1997 439 (29) 131 (27) 351 (28) 74:4± 22:9 360 (26) 7:4± 2:0
1998–2000 465 (30) 119 (25) 402 (32) 74:8± 22:9 436 (32) 7:1± 1:9
2001–2003 424 (28) 121 (25) 368 (29) 75:1± 20:9 396 (29) 7:5± 2:0
2004–2007 212 (14) 106 (22) 151 (12) 76:8± 19:9 188 (14) 7:5± 1:7
Maternal age (y)
Missing 50 (3) 16 (3) 46 (4) 77:7± 22:0 21 (2) 6:8± 2:0
17–24 231 (15) 63 (13) 209 (16) 76:5± 22:1 216 (16) 7:5± 1:9
25–29 448 (29) 140 (30) 377 (30) 75:6± 22:5 408 (30) 7:1± 2:1
30–34 520 (34) 160 (34) 397 (31) 73:3± 21:3 471 (34) 7:5± 1:8
≥35 291 (19) 98 (21) 243 (19) 75:0± 22:1 264 (19) 7:4± 1:9

U.S. EPA Regiona

1. CT ME MA NH RI (VT) 46 (3) 11 (2) 26 (2) 79:1± 19:2 31 (2) 7:5± 2:2
2. NJ NY 150 (10) 34 (7) 88 (7) 75:8± 23:0 136 (10) 7:4± 1:9
3. DE DC MD PA VA WV 141 (9) 38 (8) 110 (9) 74:9± 19:2 124 (9) 7:4± 1:8
4. AL FL GA KY MS NC SC (TN) 128 (8) 40 (8) 95 (7) 76:7± 19:1 119 (9) 7:5± 1:8
5. IL IN MI MN OH WI 237 (15) 70 (15) 194 (15) 76:8± 20:9 204 (15) 7:6± 1:8
6. AR LA NM OK TX 111 (7) 41 (9) 80 (6) 77:8± 24:1 99 (7) 6:9± 1:9
7. IA KS MO NE 65 (4) 14 (3) 55 (4) 80:7± 21:4 53 (4) 7:3± 2:1
8. CO UT (WY MT ND SD) 31 (2) 6 (1) 16 (1) 82:9± 19:5 28 (2) 7:1± 2:2
9. AZ CA (HI) NV 592 (38) 210 (44) 572 (45) 72:9± 22:9 551 (40) 7:3± 2:0
10. (AK) ID OR WA 39 (3) 13 (3) 36 (3) 71:3± 21:8 35 (3) 8:0± 1:7
Census block group percentiles
Population density
0–35 383 (25) 128 (27) 313 (25) 76:5± 21:8 337 (24) 7:4± 1:9
36–65 546 (35) 163 (34) 436 (34) 75:5± 21:6 485 (35) 7:4± 1:9
66–100 (highest density) 611 (40) 186 (39) 523 (41) 73:7± 22:4 558 (40) 7:3± 1:9
At least a high school education
0–25 712 (46) 231 (48) 604 (47) 74:4± 22:1 630 (46) 7:4± 2:0
26–60 486 (32) 149 (31) 399 (31) 74:5± 21:9 446 (32) 7:2± 2:0
61–100 (higher education) 342 (22) 97 (20) 269 (21) 77:1± 21:8 304 (22) 7:4± 1:8
Median rent
0–25 758 (49) 243 (51) 644 (51) 73:4± 22:6 689 (50) 7:4± 1:9
26–50 430 (28) 113 (24) 357 (28) 75:6± 21:5 393 (28) 7:3± 1:9
51–100 (higher rent) 352 (23) 121 (25) 271 (21) 78:0± 20:8 298 (22) 7:3± 2:0

Note: AGRE,AutismGenetic Resource Exchange; ASD,Autism SpectrumDisorder; CSS,Calibrated Severity Score; SRS, Social Responsiveness Scale.
aStandard state abbreviations are used. There were no participants for states listed in parentheses.
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the nature of this multiplex case–control sample. Mean SRS scores
for participants with an ASD diagnosis were well above the typical
cutoff of 76 used to indicate severe autism (Constantino et al.
2003) (mean±SD SRS total t-score of 84:5± 15:8) whereas those
without an ASD diagnosis had a mean of 42:3±10:9. The mean
CSS among participants with an ASD diagnosis was near the upper
end of the 1–10 scale (7:4± 1:9), and the correlation between the
SRS total t-score and CSS among those with ASD was low: 0.25
with a partial correlation (accounting for family structure and
adjusted covariates) of 0.28. Participants with an ASD diagnosis
were more commonly males, had fewer siblings, and were born in
earlier years compared with unaffected siblings, but did not differ
by typical risk factors for ASD such as maternal age (Table 1). The
largest proportion of subjects (∼ 40%) was born in U.S. EPA
Region 9, which includes California.

In adjusted models of log-transformed air toxics, several air
toxics exhibited positive or inverse associations with ASD diagnosis
(Table 2). Controlling the FDR at 0.1, notable positive associations
were for 1,4-dioxane, bromoform, dibenzofurans, glycol ethers,
methyl tert-butyl ether (MTBE), and propionaldehyde; whereas 1,4-
dichlorobenzene, 4,40-methylene diphenyl diisocyanate (MDI), ben-
zidine, and ethyl carbamate (urethane) were inversely associated
with an ASD diagnosis. These air toxics with notable associations
were distributed across five correlation groups orwere not correlated
with other air toxics. Some additional air toxics exhibited associa-
tions with confidence limits that did not include the null but did not
pass correction for multiple comparisons. In the sensitivity analysis
of restricted birth years, ASD diagnosis associations were similar or
greater in magnitude, although with reduced precision due to the
reduced sample size (see Table S3).

Autism phenotype as measured by the SRS total t-score was
not notably associated with any air toxics in adjusted models after
controlling for the FDR (Table 2). The other continuous outcome,
autism severity measured by the CSS, was positively associated
with carbon disulfide (with an estimated increase of 0.88 points on
the 10-point CSS scale) and chlorobenzene (0.73 point increase),
whereas less severe autism was associated with 1,4-dichloroben-
zene (1.41 points lower on the CSS), after accounting for the FDR
(Table 2). Patterns of associations across the three autism outcome
measures were generally consistent in direction, so that above-null
associations with ASD diagnosis for a given air toxic were usually
found with a positive change in the SRS and CSS, and vice versa.
(An exception may be 1,4-dioxane, which showed a risk associa-
tionwith ASD diagnosis but was associatedwith a lower CSS.)

Some correlation groups included air toxics with results of sim-
ilar magnitude and direction. For example, Group C included posi-
tive associations with ASD diagnosis for diesel particulate matter,
ethyl benzene, and xylenes (with confidence limits excluding the
null but not passing FDR), with all seven air toxics in this group
exhibiting null or positive associations (Table 2). Group F is
another example where all four correlated air toxics had positive
associations ranging inmagnitude from1.24 (4,40-methylenediani-
line) to 2.87 (1,4-dioxane). An example of a group with inverse
associations is Group M including 1,2-dibromo-3-chloropropane
and 4-nitrophenol, both with below-null odds ratios with confi-
dence limits excluding the null but not passing FDR.

We found some evidence that measured air toxics acted as
copollutant confounders, so that when they were included as
adjustment factors in two-pollutant models, the odds ratio for the
other air toxic was attenuated (Table 3). Some changes in esti-
mate were strong. An example is 1,1,1-trichloroethane (methyl
chloroform) that had a single-pollutant odds ratio for an ASD di-
agnosis of 1.88 (95% CI: 1.04, 3.38), which was attenuated to
0.55 (95% CI: 0.22, 1.37) adjusting for benzidine, to 0.83 (95%
CI: 0.32, 2.14) adjusting for mercury compounds, and to 1.23

(95% CI: 0.48, 3.17) adjusting for pentachloronitrobenzene.
Another example is diesel particulate matter that had an odds ra-
tio with ASD diagnosis of 1.44 (95% CI: 1.06, 1.97), which was
attenuated to 1.06 (95% CI: 0.73, 1.55) adjusting for propionalde-
hyde. In contrast, associations for the air toxics found to be nota-
bly associated with ASD diagnosis (after controlling for multiple
comparisons) were robust to adjusting for correlated air toxics; in
all two-pollutant models, odds ratios were generally unchanged
for risk associations with MTBE and propionaldehyde, and for
protective associations for 1,4-dichlorobenzene, 4,40-methylene
diphenyl diisocyanate (MDI), and benzidine. The precision for
odds ratio from the two-pollutant models was only slightly worse
than in single-pollutant models, despite the inclusion of corre-
lated air toxics, the maximum partial correlation being 0.93 for
xylenes and ethyl benzene.

When examining participant sex as a modifier of associations
between air toxics and ASD diagnosis, associations were generally
higher among males (see Table S4). We did not observe modifica-
tion for those air toxics identified to have notable associations after
multiple comparison correction in primary analyses. However, we
did observe modification for 11 other air toxics.

Discussion
We examined 155 air toxics in relation to three autism-related
endpoints, finding several air toxics associated with increased
and a few with decreased risk of ASD diagnosis and autism se-
verity, after adjusting for the family propensity to be exposed to
air toxics and correcting for the possibility of false positives due
to multiple comparisons.

Our results are consistent with other lines of evidence that
traffic-related air pollutants are linked to ASD. Two of the air
toxics with stronger risk associations here (considered notable af-
ter accounting for multiple comparisons) are part of the air pollu-
tion mixture emitted from vehicles: propionaldehyde and MTBE.
Propionaldehyde is formed from the combustion of gasoline, die-
sel, and waste/biomass burning, and also has industrial uses.
Human or animal impacts of low-level inhaled propionaldehyde
are not well-studied (U.S. EPA 2017). MTBE was a widely used
gasoline additive phased out in the mid-2000s, toward the end of
the exposure period included here. Although the mechanisms
whereby MTBE may have an impact on autism are unknown,
nervous system involvement is supported by evidence that
MTBE is a central nervous system depressant in adult humans,
and by rodent studies that implicate neurotransmitter alterations
and impacts on spatial memory (Kinawy et al. 2014; ATSDR
1996; Zheng et al. 2009). We also found positive associations
between other traffic-related air toxics and ASD, but only at a
more liberal statistical significance threshold (p<0:05): diesel
particulate matter, ethyl benzene, and xylenes. That these air
toxics clustered together (correlation group C) suggests that they
arose from a shared source, perhaps vehicular traffic. These
results for diesel particulate matter, ethylbenzene, and xylenes
were consistent with some, but not all, previous studies (see
Table S1). For two other traffic-related air toxics—benzene and
toluene—previous studies found a link with ASD, but our results
were null. Discrepancies between our findings and those in prior
reports may be due in part to our analytical design, which con-
trolled for the family-level exposure (as discussed below), or
could be influenced by copollutant confounding. Our findings
regarding the traffic pollutants MTBE and propionaldehyde, to-
gether with the preponderance of published associations between
traffic-related air toxics and also PM2:5 with ASD risk (Becerra
et al. 2013; Volk et al. 2013, Lam et al. 2016), further support a
role for mobile source emissions in ASD.
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Table 2. Adjusted associations between log-transformed air toxics and ASD diagnosis, Social Responsiveness Scale total t-score, and autism Calibrated
Severity Score, by air toxics correlation group.

Air Toxic ASD diagnosis OR (95% CI) Change in SRS score (95% CI) Change in CSS (95% CI)

Group A
1,4-Dichlorobenzene (p-dichlorobenzene)a 0.25 (0.09, 0.66)b −15:24 (−25:12, −5:36) −1:41 (−2:28, −0:54)b
Bis(2-ethylhexyl)phthalate 6.62 (0.35, 124.22) 2.90 (−28:68, 34.47) −1:03 (−3:60, 1.54)
Bromoform 3.94 (1.68, 9.21)b 3.35 (−6:89, 13.59) 0.79 (−0:05, 1.62)
Captan 1.08 (0.56, 2.06) −4:63 (−12:37, 3.11) −0:20 (−0:83, 0.42)
Carbaryl 1.15 (0.60, 2.22) −5:58 (−13:22, 2.05) −0:13 (−0:78, 0.51)
Carbon tetrachloridea,c 1.52 (0.55, 4.19) 8.16 (−3:91, 20.23) −0:26 (−1:24, 0.72)
Chlordane 0.91 (0.17, 4.76) −0:30 (−20:13, 19.53) 0.34 (−1:61, 2.29)
Hexachloroethane 1.45 (0.49, 4.30) 0.52 (−12:48, 13.52) 0.75 (−0:32, 1.83)
Methyl ethyl ketone (2-butanone) 1.30 (0.49, 3.44) 7.76 (−4:98, 20.5) −1:13 (−2:19, −0:07)
Group B
2,4-Dinitrotoluene 0.99 (0.87, 1.13) −0:37 (−1:92, 1.18) 0.07 (−0:06, 0.20)
Cyanide compounds 1.04 (0.88, 1.22) −0:19 (−2:08, 1.71) 0.13 (−0:03, 0.30)
Dimethyl sulfate 1.11 (0.85, 1.43) −0:18 (−3:21, 2.85) 0.13 (−0:12, 0.37)
N,N-Dimethyl aniline 1.01 (0.88, 1.15) −0:18 (−1:78, 1.41) 0.07 (−0:06, 0.20)
Group C
Diesel particulate matterc 1.44 (1.06, 1.97) 3.23 (−0:33, 6.79) 0.00 (−0:33, 0.32)
Ethyl benzenec 1.55 (1.08, 2.23) 2.86 (−1:25, 6.96) 0.12 (−0:25, 0.49)
Hexanec 1.30 (0.89, 1.91) 2.08 (−2:17, 6.33) 0.12 (−0:26, 0.51)
Methanol 0.99 (0.67, 1.45) 1.97 (−2:23, 6.16) 0.21 (−0:17, 0.60)
Naphthalene 0.96 (0.56, 1.65) 3.51 (−2:31, 9.34) 0.20 (−0:32, 0.72)
Toluenec 1.05 (0.71, 1.55) 1.58 (−2:99, 6.14) −0:11 (−0:49, 0.28)
Xylenes (isomers and mixture)c 1.49 (1.04, 2.14) 3.38 (−0:76, 7.52) 0.14 (−0:23, 0.50)
Group D
1,3-Butadienec 0.98 (0.73, 1.32) 0.94 (−2:40, 4.27) 0.10 (−0:19, 0.39)
2,2,4-Trimethylpentane 1.79 (1.12, 2.87) 5.49 (0.54, 10.43) 0.20 (−0:25, 0.66)
Benzenec 1.13 (0.81, 1.57) 3.33 (−0:77, 7.43) 0.00 (−0:32, 0.33)
Group E
Carbon disulfide 1.46 (0.85, 2.53) 4.10 (−2:57, 10.77) 0.88 (0.34, 1.41)b

Mercury compoundsc 1.78 (1.11, 2.84) 3.83 (−1:83, 9.50) 0.26 (−0:21, 0.73)
Vinyl chloridec 1.44 (0.94, 2.23) 1.02 (−4:06, 6.11) 0.22 (−0:21, 0.66)
Group F
1,1,1-Trichloroethane (methyl chloroform) 1.88 (1.04, 3.38) 3.73 (−2:91, 10.37) 0.20 (−0:35, 0.76)
1,4-Dioxane 2.87 (1.43, 5.76)b 4.36 (−3:53, 12.24) −0:42 (−1:11, 0.26)
4,4 0-Methylenedianiline 1.24 (0.67, 2.27) −0:97 (−7:99, 6.05) −0:08 (−0:67, 0.51)
Pentachloronitrobenzene 2.22 (1.23, 4.04) 3.31 (−3:41, 10.03) −0:33 (−0:89, 0.22)
Group G
1,1,2,2-Tetrachloroethanec 1.37 (0.94, 1.98) −1:10 (−5:3, 3.11) −0:13 (−0:53, 0.27)
Ethylene dibromide (dibromomethane)c 0.97 (0.54, 1.74) −3:74 (−10:12, 2.65) −0:01 (−0:58, 0.55)
Ethylene dichloridec 1.37 (0.97, 1.93) 0.89 (−3:14, 4.93) 0.04 (−0:31, 0.38)
Propylene dichloridec 1.58 (1.04, 2.41) −0:67 (−5:49, 4.16) −0:02 (−0:45, 0.41)
Group H
1,1-Dimethyl hydrazine 1.51 (0.82, 2.78) 0.38 (−6:21, 6.97) −0:39 (−0:95, 0.18)
3,3-Dichlorobenzidene 1.04 (0.59, 1.84) −3:20 (−9:35, 2.95) −0:69 (−1:23, −0:16)
4,6-Dinitro-o-cresol, and salts 1.07 (0.63, 1.83) −0:42 (−6:96, 6.12) −0:22 (−0:76, 0.33)
o-Anisidine 2.13 (1.11, 4.06) 1.73 (−5:16, 8.62) −0:23 (−0:82, 0.36)
Benzotrichloride 1.03 (0.48, 2.22) −3:35 (−11:48, 4.77) −0:59 (−1:28, 0.09)
Bis(chloromethyl)ether 0.89 (0.42, 1.86) −5:56 (−13:03, 2.18) −0:23 (−0:93, 0.48)
Chloromethyl methyl ether 1.15 (0.59, 2.24) −3:47 (−10:84, 3.90) −0:41 (−1:02, 0.20)
Dichloroethyl ether [bis(2-chloroethyl) ether] 1.18 (0.63, 2.18) 0.14 (−7:68, 7.96) −0:51 (−1:11, 0.09)
Dichlorvos 1.19 (0.56, 2.51) −2:65 (−10:51, 5.21) −0:03 (−0:69, 0.64)
Diethyl sulfate 1.22 (0.63, 2.37) 0.98 (−6:75, 8.71) −0:27 (−0:90, 0.36)
Heptachlor 1.64 (0.83, 3.23) 1.90 (−5:37, 9.17) −0:41 (−1:00, 0.18)
Methyl isocyanate 1.99 (1.06, 3.75) 2.21 (−4:52, 8.94) −0:24 (−0:81, 0.33)
Phosgene 1.27 (0.70, 2.32) −1:53 (−8:49, 5.44) −0:10 (−0:67, 0.48)
p-Phenylenediamine 1.50 (0.83, 2.74) 2.23 (−4:91, 9.37) −0:28 (−0:85, 0.28)
Styrene oxide 1.24 (0.52, 2.93) −1:13 (−9:63, 7.37) −0:52 (−1:27, 0.23)
Vinyl bromide 1.00 (0.42, 2.39) −4:50 (−13:08, 4.08) −0:73 (−1:51, 0.04)
Group I
Acetaldehydec 0.83 (0.61, 1.15) 1.91 (−1:98, 5.81) −0:11 (−0:43, 0.21)
Formaldehydec 1.00 (0.73, 1.36) 4.33 (0.48, 8.17) −0:15 (−0:46, 0.17)
Methylene chloride (dichloromethane)c 1.09 (0.80, 1.49) 2.93 (−0:78, 6.64) −0:05 (−0:36, 0.26)
Group J
Acroleinc 1.65 (1.11, 2.43) 2.87 (−1:58, 7.31) 0.10 (−0:29, 0.49)
Cresols/cresylic acid (isomers and mixture) 1.42 (0.78, 2.57) 2.14 (−4:44, 8.73) 0.29 (−0:28, 0.85)
Propionaldehydec 1.92 (1.33, 2.77)b 2.65 (−1:46, 6.77) 0.19 (−0:18, 0.56)
Group K
Aniline 1.22 (0.68, 2.21) 1.01 (−5:81, 7.84) −0:16 (−0:73, 0.42)
Chloroacetic acid 1.47 (0.84, 2.57) 0.67 (−5:59, 6.93) 0.08 (−0:44, 0.60)
Titanium tetrachloride 1.43 (0.79, 2.59) 2.77 (−3:81, 9.34) −0:25 (−0:81, 0.30)
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Table 2. (Continued.)

Air Toxic ASD diagnosis OR (95% CI) Change in SRS score (95% CI) Change in CSS (95% CI)

Group L
1,2,4-Trichlorobenzene 1.28 (0.98, 1.66) 0.82 (−2:22, 3.85) 0.32 (0.06, 0.58)
o-Toluidine 1.46 (1.09, 1.97) 1.22 (−2:22, 4.65) 0.16 (−0:13, 0.45)
Group M
1,2-Dibromo-3-chloropropane 0.60 (0.37, 0.97) −5:35 (−11:01, 0.31) −0:28 (−0:73, 0.17)
4-Nitrophenol 0.50 (0.30, 0.84) −7:35 (−12:96, −1:75) −0:37 (−0:86, 0.11)
Group N
2,4-Dinitrophenol 1.49 (0.93, 2.38) 0.00 (−5:36, 5.36) 0.22 (−0:23, 0.67)
Dibenzofurans 2.53 (1.35, 4.74)b 4.83 (−2:33, 11.99) 0.39 (−0:23, 1.00)
Group O
2-Chloroacetophenone 0.80 (0.41, 1.58) −3:59 (−11:62, 4.43) −0:29 (−0:91, 0.33)
Methyl hydrazine 1.10 (0.51, 2.39) −2:87 (−12:00, 6.26) −0:22 (−0:96, 0.53)
Group P
2-Nitropropane 1.17 (0.95, 1.43) 1.35 (−0:98, 3.67) 0.26 (0.07, 0.45)
Nitrobenzene 1.09 (0.98, 1.23) 0.19 (−1:18, 1.56) 0.09 (−0:02, 0.20)
Group Q
4,4 0-Methylene diphenyl diisocyanate (MDI) 0.54 (0.39, 0.76)b −5:51 (−8:86, −2:17) −0:19 (−0:49, 0.10)
Ethylene glycol 0.61 (0.37, 1.00) −2:38 (−7:98, 3.21) −0:09 (−0:59, 0.40)
Group R
Acetonitrile 1.05 (0.83, 1.33) 0.57 (−2:13, 3.26) 0.12 (−0:11, 0.35)
Allyl chloride 1.03 (0.91, 1.17) 0.27 (−1:17, 1.72) 0.14 (0.02, 0.26)
Group S
Antimony compounds 1.13 (0.74, 1.74) −0:56 (−5:34, 4.22) 0.09 (−0:33, 0.52)
Cobalt compounds 1.12 (0.77, 1.61) 0.55 (−3:60, 4.70) 0.22 (−0:14, 0.59)
Group T
Chlorobenzene 1.35 (0.86, 2.14) 5.51 (0.17, 10.85) 0.73 (0.30, 1.15)b

Methyl bromide (bromomethane) 1.08 (0.65, 1.79) 3.42 (−2:69, 9.53) 0.47 (−0:02, 0.96)
Group U
Chromium compoundsc 1.00 (0.74, 1.35) 0.44 (−3:07, 3.94) −0:26 (−0:56, 0.04)
Nickel compoundsc 1.08 (0.77, 1.51) −1:09 (−5:31, 3.12) −0:20 (−0:54, 0.13)
Group V
Dimethyl formamide 1.18 (0.98, 1.43) −0:10 (−2:18, 1.98) 0.08 (−0:10, 0.26)
Ethyl chloride 1.06 (0.80, 1.39) −1:01 (−4:11, 2.10) 0.23 (−0:04, 0.49)
Group W
Epichlorohydrin 1.25 (0.96, 1.64) 0.65 (−2:43, 3.73) −0:01 (−0:28, 0.26)
Ethyl acrylate 1.28 (0.93, 1.75) 0.51 (−3:07, 4.10) 0.17 (−0:14, 0.48)
Group X
Hexachlorobutadiene 1.28 (0.89, 1.84) 4.28 (−0:23, 8.78) 0.50 (0.14, 0.85)
Hexachlorocyclopentadiene 1.06 (0.94, 1.18) 0.57 (−0:78, 1.92) 0.04 (−0:07, 0.15)
Group Y
Hydrochloric acid 1.16 (0.78, 1.73) 1.52 (−3:11, 6.15) 0.10 (−0:31, 0.51)
Hydrofluoric acid 1.24 (0.89, 1.73) −0:36 (−4:12, 3.40) −0:18 (−0:53, 0.16)
Group Z
Maleic anhydride 1.82 (0.90, 3.72) −0:15 (−8:26, 7.96) −0:16 (−0:88, 0.56)
Phthalic anhydride 0.89 (0.41, 1.91) −5:24 (−13:80, 3.33) −0:31 (−1:08, 0.46)
Air toxics not in a group
1,1,2-Trichloroethane 1.10 (0.79, 1.53) −1:27 (−5:13, 2.58) 0.35 (0.03, 0.67)
1,2-Epoxybutane 0.67 (0.38, 1.19) −3:21 (−9:60, 3.19) −0:61 (−1:17, −0:05)
1,2-Propylenimine 1.19 (0.69, 2.06) −0:19 (−6:65, 6.28) −0:03 (−0:56, 0.50)
1,3-Dichloropropenec 1.00 (0.95, 1.05) 0.20 (−0:44, 0.84) 0.02 (−0:03, 0.07)
2,4,6-Trichlorophenol 1.64 (0.57, 4.70) 0.21 (−12:30, 12.72) 0.13 (−0:85, 1.11)
2,4-D, salts and esters 1.40 (0.71, 2.78) −2:73 (−10:85, 5.38) 0.02 (−0:65, 0.69)
2,4-Toluene diisocyanate 1.64 (1.11, 2.44) 2.15 (−2:14, 6.44) −0:19 (−0:56, 0.18)
4,4 0-Methylene bis(2-chloroaniline) 1.93 (0.66, 5.64) 3.61 (−7:81, 15.04) −0:34 (−1:34, 0.66)
Acetamide 1.02 (0.52, 2.01) 2.46 (−5:57, 10.49) 0.76 (0.10, 1.42)
Acetophenone 1.12 (0.75, 1.68) 3.74 (−0:75, 8.22) −0:21 (−0:61, 0.18)
Acrylamide 1.47 (0.82, 2.63) 2.72 (−3:87, 9.31) 0.18 (−0:38, 0.73)
Acrylic acid 1.39 (0.89, 2.15) 1.37 (−3:57, 6.31) 0.19 (−0:23, 0.61)
Acrylonitrilec 0.97 (0.66, 1.42) −1:97 (−6:59, 2.66) −0:09 (−0:47, 0.28)
Arsenic compoundsc 0.94 (0.68, 1.30) 0.93 (−2:68, 4.54) −0:11 (−0:42, 0.20)
Asbestosd 7.02 (0.32, 151.73) 22.68 (−8:75, 54.1) −3:52 (−6:93, −0:11)
Benzidine 0.41 (0.25, 0.68)b −8:03 (−13:53, −2:52) −0:50 (−0:96, −0:04)
Benzyl chloride 1.12 (0.74, 1.68) 0.39 (−4:22, 5.00) −0:02 (−0:44, 0.40)
Beryllium compoundsc 0.74 (0.55, 1.02) −0:88 (−4:39, 2.62) −0:30 (−0:61, 0.01)
Biphenyl 0.88 (0.57, 1.35) −0:97 (−5:57, 3.62) 0.05 (−0:35, 0.46)
Cadmium compoundsc 0.93 (0.70, 1.24) 0.12 (−3:17, 3.41) −0:19 (−0:47, 0.09)
Carbonyl sulfide 1.29 (0.80, 2.10) −3:88 (−9:35, 1.58) 0.06 (−0:40, 0.52)
Catechol 0.95 (0.58, 1.56) 0.57 (−5:14, 6.28) 0.24 (−0:25, 0.72)
Chlorine 1.22 (0.78, 1.91) 0.25 (−4:54, 5.05) 0.03 (−0:42, 0.49)
Chlorobenzilate 0.78 (0.25, 2.39) −1:43 (−15:86, 13.00) −0:25 (−1:12, 0.62)
Chloroformc 1.01 (0.62, 1.64) 2.42 (−3:28, 8.12) 0.13 (−0:34, 0.61)
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It would be ideal to identify the individual chemical species
within the traffic pollution mixture responsible for increased
ASD risk. This is difficult because these exposures occur to-
gether, confounding observational associations of a single pollu-
tant, a problem of copollutant confounding that is common in
environmental epidemiology. Disentangling the role of individual
chemicals (i.e., confounding) and whether combinations of chem-
icals may act in new ways (i.e., interaction) are among the key
questions of environmental mixtures currently being addressed
(Braun et al. 2016). We partly addressed the question of copollu-
tant confounding by examining select two-pollutant models with
the purpose of clarifying our main results. Approaches like this
that reduce data complexity and focus on specific questions are in
alignment with current recommendations for mixtures studies

(Taylor et al. 2016). In these sensitivity analyses we did find evi-
dence for copollutant confounding. For example, positive associa-
tions of propionaldehyde with ASD persisted following
adjustment for traffic-related air toxics like acrolein, ethyl benzene,
xylenes, and diesel particulate matter. In addition, associations of
these copollutants were substantially attenuated in the two-
pollutant models, suggesting that the correlation with propionalde-
hyde accounted for their observed effects. Associations with
MTBE were also robust to adjustment for diesel particulate matter
and xylenes. These confounding patterns suggest that propionalde-
hyde and MTBE are more likely to be related to ASD risk than
the other studied traffic-related pollutants. However, conclusions
regarding effects of propionaldehyde and MTBE need to be con-
sidered in the context of exposure measurement error and a model

Table 2. (Continued.)

Air Toxic ASD diagnosis OR (95% CI) Change in SRS score (95% CI) Change in CSS (95% CI)

Chloroprene 1.11 (0.99, 1.26) 0.28 (−1:13, 1.70) 0.07 (−0:05, 0.19)
Coke oven emissionsc 0.70 (0.22, 2.23) −14:59 (−26:8, −2:37) 0.32 (−0:81, 1.45)
Cumene 0.73 (0.47, 1.14) −3:78 (−8:72, 1.16) 0.19 (−0:26, 0.64)
Dibutylphthalate 1.08 (0.77, 1.50) −0:89 (−4:67, 2.90) −0:10 (−0:43, 0.23)
Diethanolamine 1.19 (0.86, 1.65) 0.01 (−3:60, 3.62) 0.08 (−0:24, 0.40)
Dimethyl phthalate 0.76 (0.57, 1.00) −2:81 (−6:01, 0.40) −0:19 (−0:47, 0.08)
Ethyl carbamate (Urethane) 0.30 (0.16, 0.57)b −9:84 (−16:78, −2:91) −0:61 (−1:21, 0.00)
Ethylene oxidec 0.85 (0.62, 1.18) −2:70 (−6:56, 1.16) −0:17 (−0:50, 0.16)
Ethylene thiourea 6.33 (1.50, 26.66) 4.75 (−11:55, 21.06) 0.03 (−1:34, 1.40)
Ethylidene dichloride (1,1-dichloroethane) 0.62 (0.43, 0.89) −4:46 (−8:58, −0:34) 0.18 (−0:15, 0.50)
Glycol ethers 2.05 (1.39, 3.02)b 3.52 (−0:97, 8.01) 0.20 (−0:19, 0.59)
Hexachlorobenzenec 1.08 (0.90, 1.30) −0:80 (−3:06, 1.45) 0.07 (−0:11, 0.26)
Hexamethylene-1,6-diisocyanate 0.65 (0.39, 1.09) −3:89 (−9:56, 1.77) −0:40 (−0:91, 0.10)
Hydrazinec 0.90 (0.67, 1.21) −1:72 (−5:21, 1.77) −0:33 (−0:62, −0:04)
Hydroquinone 1.52 (0.76, 3.03) 0.22 (−8:11, 8.55) −0:29 (−0:97, 0.39)
Isophorone 1.24 (1.03, 1.50) 1.53 (−0:58, 3.63) 0.21 (0.03, 0.39)
Lead compoundsc 1.17 (0.89, 1.53) 0.85 (−2:12, 3.82) −0:07 (−0:33, 0.18)
Manganese compoundsc 0.75 (0.60, 0.95) −1:79 (−4:48, 0.90) −0:14 (−0:37, 0.09)
Methyl iodide (iodomethane) 1.32 (0.72, 2.41) 0.08 (−7:03, 7.19) 0.13 (−0:46, 0.73)
Methyl isobutyl ketone 0.84 (0.54, 1.31) 1.32 (−3:56, 6.20) −0:01 (−0:45, 0.43)
Methyl methacrylate 1.31 (0.84, 2.05) 2.28 (−2:67, 7.24) 0.46 (0.04, 0.89)
Methyl tert-butyl ether (MTBE)c 2.33 (1.31, 4.15)b 5.88 (−0:60, 12.36) 0.07 (−0:54, 0.68)
Nitrosodimethylamine 0.42 (0.11, 1.53) −4:80 (−21:73, 12.14) −0:53 (−1:77, 0.71)
Pentachlorophenol 0.71 (0.30, 1.71) −4:73 (−15:05, 5.60) −0:32 (−1:16, 0.52)
Phenol 0.79 (0.51, 1.23) −1:50 (−6:42, 3.42) −0:32 (−0:75, 0.12)
Phosphine 1.74 (0.92, 3.29) 0.37 (−7:00, 7.74) 0.02 (−0:63, 0.67)
Phosphorouse 0.67 (0.24, 1.82) −3:33 (−14:95, 8.28) 0.39 (−0:62, 1.40)
Polychlorinated biphenyls (PCBs)c 1.42 (1.00, 2.00) −0:07 (−4:31, 4.17) 0.23 (−0:13, 0.59)
Polycyclic aromatic hydrocarbons (PAHs)c 0.77 (0.54, 1.11) −5:54 (−9:80, −1:29) −0:01 (−0:37, 0.35)
Polycyclic organic matter (POM)f 0.95 (0.63, 1.42) 0.64 (−3:76, 5.04) −0:28 (−0:65, 0.10)
Propylene oxide 1.08 (0.89, 1.30) −0:68 (−2:77, 1.40) 0.18 (−0:02, 0.39)
Quinolinec 0.81 (0.68, 0.96) −1:62 (−3:69, 0.46) −0:12 (−0:30, 0.05)
Quinone (p-benzoquinone) 1.37 (0.77, 2.43) 2.64 (−3:85, 9.14) 0.06 (−0:50, 0.61)
Selenium compounds 1.08 (0.72, 1.60) −0:12 (−4:41, 4.17) −0:10 (−0:51, 0.30)
Styrenec 1.16 (0.83, 1.62) 5.02 (1.15, 8.89) 0.03 (−0:31, 0.36)
Tetrachloroethylene (perchloroethylene)c 0.90 (0.67, 1.19) −0:29 (−3:40, 2.83) −0:24 (−0:55, 0.07)
Trichloroethylenec 1.18 (0.86, 1.61) 2.05 (−1:66, 5.77) 0.14 (−0:17, 0.44)
Triethylamine 1.25 (0.86, 1.81) 1.39 (−2:67, 5.46) 0.13 (−0:23, 0.49)
Trifluralin 1.30 (0.69, 2.46) −0:88 (−8:44, 6.68) 0.40 (−0:22, 1.01)
Vinyl acetate 0.88 (0.55, 1.40) −1:25 (−6:56, 4.06) −0:08 (−0:55, 0.40)
Vinylidene chloride (1,1-dichloroethylene) 1.17 (0.80, 1.72) 1.63 (−2:72, 5.98) 0.27 (−0:09, 0.62)

Note: All models include the single log-transformed air toxic, contrasting the levels of air toxics listed in Table S2 (usually 75% vs. 25%), with a random effect for family, and adjust
for the mean air toxic level in the family, birth year, and the census block group population density, education level, and median rent. Unless otherwise specified, sample sizes for a
given air toxic reflect inclusion in three NATA model years (1999, 2002, and 2005): 1,101 cases and 346 controls (among 780 families), 921 individuals with an SRS (among 543 fam-
ilies), and 1,020 cases with a CSS (among 660 families). ASD, Autism Spectrum Disorder; CI, confidence interval; CSS, Calibrated Severity Score; M, mean; NATA, National-scale
Air Toxics Assessment; OR, odds ratio; SD, standard deviation; SRS, Social Responsiveness Scale.
a1,4-Dichlorobenzene and carbon tetrachloride had inverse correlations with the other air toxics in Group A. All other correlations in all groups were positive.
bStatistically significantly different from the null after correcting for multiple comparisons using the false discovery rate (set at 0.1).
cSample size for these air toxics reflects inclusion in all four NATA model years: 1,540 cases and 477 controls (among 1,006 families), 1,272 individuals with an SRS (among 678
families), and 1,380 cases with a CSS (among 845 families).
dAsbestos was only included in the 1999 NATA model year, allowing sample sizes of 465 cases and 119 controls (among 456 families), 402 individuals with an SRS (among 309 fam-
ilies), and 436 cases with a CSS (among 357 families).
ePhosphorous was included in NATA 2002 and 2005 model years, allowing sample sizes of 636 cases and 227 controls (among 536 families), 519 individuals with an SRS (among
335 families), and 584 cases with a CSS (among 414 families).
fPOM was included in the NATA 1996 and 1999 model years, allowing sample sizes of 904 cases and 250 controls (among 729 families), 753 individuals with an SRS (among 468
families), and 796 cases with a CSS (among 562 families).
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that did not comprehensively adjust for the entire suite of air
toxics. Additional caution is warranted because propionaldehyde
and MTBE did not show consistent associations with ASD in
the two previous studies that examined them (see Table S1)
(Kalkbrenner et al. 2010; Roberts et al. 2013).

Our sample size was not large enough to conduct a compre-
hensive mixtures analysis given the large number of air toxics
(155). (One review of current statistical approaches to environ-
mental mixtures only included 14 exposures in simulated data-
sets, and yielded inconsistent results) (Taylor et al. 2016). One
limitation of our focused two-pollutant approach was residual
confounding, caused by measurement error in the adjusted air
toxic, and also due to not adjusting for air toxics that did not
meet our criteria to include in two-pollutant models or were not
included in the NATA model. Additional limitations included the
inability to disentangle copollutants with high correlations and
the role of statistical chance. Yet our approach had strengths. It is
a practical demonstration of the feasibility of simultaneously
including correlated exposures in models without undue loss of
statistical precision.

We report new findings for ASD diagnosis and three
nontraffic-related air toxics that all have industrial uses: bromo-
form (emitted from industrial sources), glycol ethers (widely
used industrial solvents) and 1,4-dioxane (an industrial solvent).
The polluting source(s) emitting 1,4-dioxane may be important,
because this cluster (correlation group F) contained other air
toxics with positive associations with ASD: 1,1,1,-trichloroethane
and pentachloronitrobenzene. Our findings for bromoform, glycol
ethers, and 1,4-dioxane are discrepant from the one prior study
that examined them, which found null associations (Roberts et al.
2013), and so firm conclusions are not warranted until confirmed
in future studies. We additionally report a positive association
between ASD diagnosis and dibenzofurans (which arise from
large-scale waste and coal combustion in NATA data), which is
consistent with the association observed in the same prior study
(Roberts et al. 2013).

Several additional solvents have shown associations with ASD
in at least two prior studies, but not in our results: 1,3-butadiene,
formaldehyde, methylene chloride, and styrene (see Table S1).

Airborne metals have been found to be associated with ASD
previously. Cadmium, chromium, lead, and nickel had positive
associations in some prior studies (see Table S1), but not in our
results. Airborne mercury exposure has shown more consistent
links in prior studies and also had a positive association in our
data (but at the more lenient significance threshold) that was not
attenuated in the copollutant model with 1,1,1,-trichloroethane.

Different findings across studies could arise from several fac-
tors, such as differences in geographic coverage, levels of air
toxics, time period, study sample characteristics, and statistical
design. Our use of the AGRE sample allowed for enhanced con-
founding control and internal validity by adjusting for family
characteristics, including familial susceptibility, but this gain
may have been accompanied by a loss in generalizability. Our
study population consisted of families with enhanced autism
liability given that they had multiple siblings with ASD, and this
presumed genetic loading for ASD may have influenced the
observed associations. Until empirically demonstrated, we do not
currently know whether genetic loading for ASD may overshadow
observed risk due to a given environmental exposure, or whether
inherited genetic risk enhances observed environmental associa-
tions. The few studies of joint effects of air pollutant exposures
and genetic variation suggest that both broad susceptibility, based
on increased copy number burden, and specific functional variants,
may work together with exposure to increase ASD risk (Kim et al.
2017; Volk et al. 2014).

The hierarchical nature of siblings nested within families
yielded a unique opportunity to control by design for the family
propensity to be exposed to an air toxic, encompassing aspects of
socioeconomic status and determinants of neighborhood, possibly
to include genetics (Begg and Parides 2003). This likely yielded
improved confounding control compared with previous studies of
air toxics and ASD that were only able to adjust for measured
confounders. We preferred this family propensity design over an
alternate design stratified by family. A family-stratified design
for this dataset would have excluded families that lacked a case
and control, a large proportion in this sample, and would have
been overly influenced by discordant exposures within a family,
a condition that may introduce bias (Frisell et al. 2012).
Examination of environmental exposures in a family-based
design, while most often conducted with the overarching goal of
detecting gene–environment interactions, increases the statistical
power to detect an environmental main effect when a background
gene–environment interaction is present (Weinberg et al. 2007).
Although the use of a sibling control can protect against shared
familial confounding factors, it can also help to protect against
bias when the exposure of interest is associated with background
population structure. As an example with relevance to this study
of air pollution, some literature suggests that genetic inheritance
may influence the choice of geographic location (e.g., urban vs.
rural home residence), a major determinant of air pollutant expo-
sures (Sariaslan et al. 2016; Whitfield et al. 2005). As has been
shown for detection of gene–environment effects, inclusion of a
family-based measure of the exposure distribution (as in our anal-
ysis) protects against such bias for detection of gene–environ-
ment effects (Shi et al. 2011). In our case, inclusion of the
average family exposure can be interpreted similarly and may
reflect both heritable and nonheritable influences of the air pollu-
tion–ASD relationship, including that of the maternal genome on
perinatal exposure or population genetic influences that regulate
exposure response to air pollution. Such advantages are unique to
sibling designs (Weinberg 2012) and unique to this study of air
pollution and ASD.

Whether males or females are more susceptible to the impacts
of an environmental chemical exposure with regard to autism diag-
nosis is an important question, prompted in part by the consistent
observations that males are four to five times more likely to be
diagnosed with autism. We did not find sex modification for the
air toxics with the strongest associations with ASD. A more im-
portant observation may be that across almost every air toxic,
associations were stronger for males: results consistent with those
of Roberts et al. (Roberts et al. 2013). Together these findings sug-
gest that males may be more susceptible to airborne pollutants.

In addition to examining ASD diagnosis, we evaluated associ-
ations of air toxics with measures of ASD-related traits (using the
SRS) and with a measure of autism severity (the CSS). Behavior
is difficult to measure, and the multiple continuous measures of
phenotypic dimensions are a novel contribution to the assessment
of effects of environmental chemicals and neurodevelopment
(Sagiv et al. 2015). Because the AGRE sample comprised partici-
pants with ASD and their unaffected siblings, the SRS scores fol-
lowed a bivariate distribution with a mean much higher than a
typical population. This constriction in the full range of scores
may partly explain why the SRS was a nonsensitive endpoint for
assessing the impacts of air toxics in this sample. In contrast, the
CSS is a measure of severity used only among cases. The CSS
may be capturing a distinct domain of neurodevelopmental
impairment, and was only moderately correlated with the SRS
score in these data. A role for air toxics in increasing the severity
of autism symptoms is important to identify because it may pro-
vide pathophysiological insights or avenues for reducing the
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burden of autism morbidity. Air toxics emerging as risk factors
for greater autism severity (CSS score) were manufacturing
chemicals: carbon disulfide and chlorobenzene. Findings for
these chemicals were consistent in direction for the other autism
endpoints in our data, strengthening the evidence that these air
toxics may deserve future study.

We observed inverse (protective) associations between ASD
diagnosis and several air toxics: 1,4-dichlorobenzene, 4,40-meth-
ylene diphenyl diisocyanate (MDI), benzidine, and ethyl carba-
mate (urethane) and for 1,4-dichlorobenzene with autism severity.
These associations persisted after controlling for the FDR and af-
ter adjusting for correlated air toxics. We cannot rule out that
these findings reflect true protective effects, although previous
findings from the one prior study that included these do not sup-
port this (Roberts et al. 2013) (see Table S1). Alternately, these
inverse findings (in addition to the risk associations observed)
could be influenced by residual confounding or error in the air
toxics model used.

The NATA model has been validated against measured air
toxics and shows good agreement for many air toxics. Yet uncer-
tainties remain given that existing validation studies show that
accuracy is not equally good for all air toxics and varies geograph-
ically (Payne-Sturges et al. 2003; Pratt et al. 2000; Rosenbaum
et al. 1999; State of New Jersey 2001). Exposure measurement
error arises from NATA model uncertainties, limitations in the
emissions inputs, and from using a census-tract average to repre-
sent individual exposure. Yet in most areas of the United States
for the study period, NATA is the only source of human exposure
estimates for many air toxics, and for this reason has been used in
at least four prior studies of air toxics and ASD (see Table S1).

Additional exposure measurement error may arise from
applying NATA estimates in a given year to births that occurred
up to 2 y earlier or later. Our sensitivity analysis showed that
associations remained when analyses were restricted to children
born in birth years better aligned with NATA estimates, adding
to the robustness of these findings. Associations were generally
of greater magnitude in this sensitivity analysis, which is consist-
ent with expectations that greater exposure measurement error in
the larger sample would result in a small bias toward the null.

Our results likely underestimate the effect of some air pollu-
tants, leading to false negatives. We cannot know for which air
toxic the effect estimates were attenuated, and are therefore
unable to definitively screen out air toxics that are truly not risk
factors for ASD diagnosis or phenotype. False positive associa-
tions, however, are not likely due to exposure measurement error,
because this would require that the degree of error differed for
those diagnosed with ASD versus those without. This differential
error is unlikely given that the air toxics assessment and autism
measurements were independent.

We focused on producing valid estimates of ASD effects for
155 air toxics, which involved multiple statistical comparisons.
We accounted for the potential of falsely identifying a risk factor
using a FDR method (Benjamini and Hochberg 1995). Although
this method ensures with high probability that most of our find-
ings are not due to statistical chance, it does not guarantee this
simultaneously for all findings. The method predicts a 65% prob-
ability that at least one finding is false.

In summary, our results corroborate prior findings that traffic
emissions may lead to ASD, further implicating propionaldehyde
and MTBE as individual air toxics that may be contributing to
such effects. We also found that nontraffic-related air toxics may
be risk factors for ASD, confirming a previous report of a role for
dibenzofurans and newly reporting associations for bromoform,
glycol ethers and 1,4-dioxane with ASD diagnosis. We have
expanded the scope of work on air toxics and ASD to consider

measures of the autism phenotype in order to explore how risks
for disease may differ from those for severity, finding that autism
severity may be influenced by carbon disulfide and chlorobenzene.
The novel use of a multiplex sample and associated statistical
approach to control confounding may account for differences in
results from prior studies and may limit generalizability. Although
we did not confirm associations with several metals and volatile
organic compounds detected in prior studies, our null findings can-
not be considered definitive given potential exposure measurement
error and differences in the population and analytical design.
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